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The recently discovered supersymmetric generalizations of the Langevin dynamics and Kramers equation
can be utilized for the exploration of free-energy landscapes of systems whose large time-scale separation
hampers the usefulness of standard molecular dynamics techniques. The first realistic application is here
presented. The system chosen is a minimalist model for a short alanine peptide exhibiting a helix-coil
transition.

DOI: 10.1103/PhysRevE.75.046707 PACS number�s�: 02.70.Ns, 05.10.Gg, 87.15.Aa

I. INTRODUCTION

The problem of identifying and exploring critical regions
on free-energy landscapes is central to many disciplines ly-
ing at the interface between physics and chemistry �1�: It is
an outstanding issue in the study of atomic clusters, glasses,
supercooled liquids, biopolymer dynamics, and protein fold-
ing.

Many authors �2–8� have been developing methods to
find reaction paths based on a statistical description of the
ensemble of pathways connecting certain phase-space re-
gions. A radically different approach has been recently pro-
posed �9–11�: The supersymmetry hidden in the Kramers
equation can be made explicit by coupling to the “bosonic”
degrees of freedom in the phase space an equal number of
“fermionic” ones in the tangent space. As the usual Kramers
equation is the base of molecular dynamics �MD� simula-
tions, so its supersymmetric �SuSy� generalization gives rise
to an enhanced MD, suitable for the study of systems char-
acterized by time-scale separation. Rigorous theoretical argu-
ments and one- and two-dimensional toy model applications
have established that, in a purely energetic landscape, SuSy
MD is able to find reaction paths in a time much shorter than
the activation time.

However, in order to pave the way to realistic problem
applications, the feasibility of SuSy MD must be established
in the framework of high-dimensional free-energy land-
scapes. By studying a model not very computationally de-
manding, but possessed of all the other complications which
characterize current research in biomolecular simulations, we
provide the missing piece of evidence that the method is able
to signal the presence of entropic as well as energetic barri-
ers. We show that the identification of the reaction path ob-
tained by SuSy MD is fully consistent with the results of
standard MD, with the advantage that the simulation time
needed is orders of magnitude shorter.

In the following we first briefly review the supersymmet-
ric formulation of the Kramers equation, urging the reader
interested in more details to peruse Refs. �10,11�: With re-
spect to the existing literature, however, we try to clarify the
peculiar problems raised by the application to free-energy

landscapes. A brief description of technical aspects of the
method used is followed by the results of its application to
our test system.

II. SUPERSYMMETRIC KRAMERS EQUATION

We consider a system of n interacting particles in three-
dimensional space, defined by the Hamiltonian

H =
p2

2m
+ V�q� , �1�

where the vectors q= �q�1 , . . . ,q�n� and p= �p�1 , . . . , p�n� indicate
the positions and momenta associated with the particles and
V�q� is the interaction potential. To simplify the notation, we
assign to each particle the same mass m. The dynamics of the
system coupled to a heat bath at constant temperature T is
described by means of a Langevin equation

q̇ = p/m ,

ṗ = − �V + �2m�T� − �p , �2�

where we have fixed the Boltzmann constant kB=1, the fric-
tion coefficient is �, and � is a Gaussian white noise:

����t�� = 0, �3�

����t����t��� = �����t − t�� . �4�

The indices � and � run over all the configuration-space
degrees of freedom 1, . . . ,N, with N=3n.

The phase-space probability density W�q ,p , t� evolves ac-
cording to the Kramers equation �12�

�

�t
W�q,p,t� = − HKW�q,p,t� , �5�

where

HK = �
�=1

N 	 �

�q�

p�

m
−

�

�p�

m�T

�

�p�

+ �p� +
�V

�q�
�� . �6�

The Kramers equation can be rewritten as a continuity equa-
tion for the probability current �12�:

Jq�
=

p�

m
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Jp�
= − 
m�T

�

�p�

+ �p� +
�V

�q�
�W�q,p,t� . �7�

It has been shown �11,13� that a hidden supersymmetry is
associated with the Kramers equation: By extending the
space with 4N-fermion operators

a�,a�
†� = ���, b�,b�

†� = ���, �8�

a supersymmetric extension of Eq. �5� is obtained:

HSK = HK +
1

m
�

�,�=1

N
�2V

�q��q�

b�
† a� + �

�=1

N

��b�
† b� − a�

† b�� .

�9�

By defining a 2N-component vector x such that x�=q� and
xN+�= p�, for �=1, . . . ,N, the evolution operator, Eq. �9�,
can be expressed in compact notation

HSK = HK + �
i,j=1

2N

Aijci
†cj , �10�

where �c1 , . . . ,c2N�= �a1 , . . . ,aN ,mb1 , . . . ,mbN� and the ma-
trix A is

A = � 0 − ���/m

�2V

�q��q�

���� � . �11�

The solution to the supersymmetric version of Eq. �5� can be
expressed in the form

���k��x,t�� = �
i1,. . .,ik

�i1,. . .,ik
�x,t�ci1

†
¯ cik

† �− � , �12�

where the function �i1,. . .,ik
�x , t� has the physical meaning of

probability density in the phase space, ��� is the fermion
vacuum, and k is the fermion number—that is, an eigenvalue
of the operator Nf=�ici

†ci. By using this notation, the super-
symmetric extension of Eq. �5� is written as

�

�t
���k��x,t�� = − HSK���k��x,t�� . �13�

III. SUPERSYMMETRIC MOLECULAR DYNAMICS

Let us first consider the solution to Eq. �13� in the zero-
fermion sector, where ���0��x , t��=W�x , t��−�. In this case we
simply recover the Kramers equation �5�. If we start from
some initial condition ���x ,0��, we can expand the generic
state ���x , t�� into right eigenvectors ��	

R�x�� of the operator
HK,

���x,t�� = �
	

C	�t���	
R�x�� , �14�

so that Eq. �5� yields

���x,t�� = �
	

C	�0�e−
	t��	
R�x�� , �15�

where HK��	
R�=
	��	

R�. As t increases, this sum is obviously
more and more dominated by the eigenvectors with the

smallest eigenvalues. For t→�, only the stationary state �de-
fined by 
=0� survives. If the system is characterized by the
presence of two �or more� well-separated time scales
�fast�slow, a corresponding gap is also present in the spec-
trum of HK.

It follows that at a time t̃ such that �fast t̃�slow, the
evolution of the system is well approximated by a linear
superposition of the K right eigenvectors below the gap:

���x, t̃�� � �
	=0

K−1

C	�0�e−
	t̃��	
R�x�� . �16�

In the framework of the master equation formulation of
nonequilibrium statistical mechanics, it can be proved
�14–16� that K suitable linear combinations of the right
eigenvectors ��	

R� below the gap exist such that the associ-
ated probability densities W�q ,p , t� are positive normalized
distributions, nonzero only on nonoverlapping regions of the
configuration space, and stationary on time scales much
shorter than �slow. One can therefore use these states for a
rigorous and general definition of metastability. It is impor-
tant to stress that these results hold true independently of the
origin of the time-scale separation.

The probability distribution W�x , t� can be used to define
a dynamic free energy

F�t� =� d2Nx

hN �H�x�W�x,t� + TW�x,t�ln W�x,t�� . �17�

For t→� the probability distribution tends to the Boltzmann
distribution

lim
t→�

W�q,p,t� =
1

Z
exp
−

H�q,p�
T

� , �18�

where Z is the partition function. It follows that

lim
t→�

F�t� = − T ln Z , �19�

which is the equilibrium definition of the Helmholtz free
energy in the canonical ensemble. Usual constant-
temperature MD simulations are limited to the study of the
zero-fermion sector: For a given potential V�q� the Langevin
equation is numerically integrated for a time t̃��slow large
enough to reach equilibrium.

In the one-fermion sector, on the other hand, the wave
function, Eq. �12�, reads

���1��x,t�� = �
i=1

2N

�i�x,t�ci
†�− � �20�

and Eq. �13� may be written as

�

�t
�i�x,t� = − HK�i�x,t� − �

j=1

2N

Aij� j�x,t� , �21�

where we have made use of Eq. �10�. This equation can be
solved with the ansatz �i�x , t�=��x , t�wi�t�, where w is a
vector of dimension 2N that does not depend on x��q ,p�
and ��x , t� evolves with the Kramers equation
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�

�t
��x,t� = − HK��x,t� . �22�

This leaves for the vector w the evolution equation

d

dt
wi = − �

j=1

2N

Aijwj . �23�

In order to avoid a divergence of the norm of w, Eq. �23� can
be modified by adding a term:

d

dt
wi = N�w�wi − �

j=1

2N

Aijwj . �24�

The norm �w� is now constant provided that we choose

N�w� =
wtAw

�w�2
. �25�

The joint distribution W�x ,w , t� evolves according to

�W

�t
= 	− HK − N�w� + �

i=1

2N
�

�wi

�

j=1

2N

Aijwj − N�w�wi��W ,

�26�

as can be checked by defining

�i�x,t� =� d2NwwiW�x,w,t� �27�

and integrating by parts.
The rules of SuSy MD are easily read from the right-hand

side of Eq. �26�. We are going to explore the free-energy
landscape by means of “walkers” moving around in the
phase space according to the usual Langevin dynamics �first
term� and each walker carries a “compass” w which evolves
with Eq. �24� �third term�. The second term tells us that the
number of walkers grows or decreases with rate −N�w�.

How does the presence of different time scales reflect in
the one-fermion sector of the spectrum of HSK? In a simpli-
fied setting where entropy plays no role and the separation of
time scales is purely due to the characteristics of the energy
landscape, the use of a WKB technique in the limit T→0
shows explicitly �10� that, while the zero-fermion states are
Gaussians centered on the local minima of the energy, the
corresponding �i.e., related by the supersymmetry� one-
fermion states are the “reduced current” densities �11� �ob-
tained by applying the SuSy charge operator to the prob-
ability currents �7��, concentrated on the saddles that separate
those minima. In other words, the dynamics given by
Eqs. �2� and �24� evolves in such a way that the walkers
quickly �that is, on a time scale larger than �fast but much
smaller than �slow� organize themselves into trails going from
one local minimum to another one by overcoming the energy
barrier along the reaction path �9�.

Since in the zero-fermion sector the right eigenvectors
below the gap define the metastable states independently of
the physical source of metastability, it is tempting to specu-
late that the interpretation of one-fermion low-lying states as
reaction paths holds also for the general case involving en-
tropy, with a single reaction path in the free-energy land-

scape standing now for a collection of paths in the phase
space. As a matter of fact, in the zero-temperature limit the
dynamic free energy, Eq. �17�, reduces to the energy; there-
fore, we can think of the WKB argument in Ref. �11� as a
rigorous proof, albeit given in a limiting case, of a more
general statement. While the generalization of the proof to
finite temperatures is currently in progress, we support here
the validity of these ideas by showing that indeed SuSy MD
can be used to efficiently identify reaction paths and saddle
points on a free-energy landscape, in a system where both
entropic and energetic factors play a role.

IV. HELIX-COIL TRANSITION

The choice of the helix-coil transition as test system is a
natural one: It is a simple phenomenon, theoretically well
understood �17�, whose free energy is shaped by the compe-
tition between energy and entropy into a landscape with two
well-defined minima, corresponding to the folded and un-
folded states �see Fig. 1�. At the transition temperature Tf the
two minima are equally populated. By using a coarse-grained
off-lattice model we keep relatively low the dimensionality
of the phase space �72 degrees of freedom for our 12-
monomer chain; see the Appendix for details�, thus reducing
the computational effort while retaining the relevant physical
features of a typical two-state folder.

In order to visualize the results, we need to project the
72-dimensional phase space associated with our model onto
a lower-dimensional space spanned by a few reaction coor-
dinates �. Although the definition of appropriate reaction co-
ordinates for the characterization of multidimensional bio-
physical processes is in general an area of active research
�18�, a fairly natural set of coordinates is associated with the
simple helix-coil transition considered here: The root-mean-

FIG. 1. �Color online� The free-energy profile at the folding
temperature, as obtained from equilibrium MD simulations. Repre-
sentative structures are shown for the helix-shaped native state and
the unfolded coil state. Each contour marks an increase of the free
energy of 1 kcal/mol.
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square deviation �d� �19,20� from the native state x�0�,

d�x,x�0�� = min
R�SO�3�

1

2
��Rx − x�0���2, �28�

and the “helicity” �� �21�,

�� =� �
i=1

NR−3

��i − �i
�0��2/�NR − 3� , �29�

where NR is the number of residues and �i, �i
�0� are the

dihedral angles of a generic configuration and of the native
configuration, respectively.

As the position x is projected onto the space spanned by
the reaction coordinates �, so is the vector w, by means of
the Jacobian matrix:

�n = �
i

��n

�xi wi, �30�

where � is the projected vector.
The study of the system by means of SuSy MD first re-

quires the generation of an initial distribution of a large num-
ber of walkers in the accessible phase space. Each walker
�x ,w� is then evolved independently according to Eqs. �2�
and �24�. Moreover, after each time step �t, there is a prob-
ability �N�w��t� for every walker of being eliminated if
N�w��0 or cloned if N�w��0.

Figure 2 shows two different distributions of walkers’ ini-
tial configurations that have been used in this study. The
distributions were generated by running MD simulations in
very different condition: the initial distribution of walkers
shown in the left panel �case A, in the following� is obtained
by performing equilibrium simulations around the folding
temperature T�Tf, over a very long timescale �t��slow, so
that the initial walkers’ distribution mirrors faithfully the free
energy landscape. On the contrary, the distribution shown in
the right panel �case B� corresponds to configurations
sampled during very rapid ��t�� fast� unfolding simulations
at a temperature T�Tf. Our experience is that the initial
distribution of walkers does not affect the result, as long as
the region of the landscape between the folded and unfolded
states is fairly populated.

In principle, the transition region is simply revealed by
the alignment of the compasses: they are randomly oriented
within the states, while along the transition path they display
coherent behavior. In practice, one needs to sift the points
according to criteria such as the walkers density and the av-
erage rate N�w�. After thorough testing, we have selected an
analysis protocol consisting of the following three steps.

�i� Select a time window.
�ii� Select a density threshold.
�iii� Select a threshold value for the variance of � �defined

below�.

N
orm

alized
W

alkers’
D

ensity
0

0.0015

FIG. 2. �Color online� Relative
walkers’ density at t=0 for two
very different initial conditions,
which lead to the same final re-
sult. The two initial distributions
of walkers have been generated by
�case A, shown in left panel� per-
forming long equilibrium simula-
tions around the transition tem-
perature Tf and �case B, shown in
right panel� performing very short
unfolding simulations at a much
higher temperature T�Tf.

FIG. 3. �Color online� The walkers’ distribution obtained by
SuSy MD �as described in the text� identifies the transition-state
region and reaction paths for the helix coil transition. The arrows
illustrate the orientation of the compasses associated with the walk-
ers and are superimposed onto the independently determined free-
energy profile at the transition temperature Tf. Each contour marks
an increase of free energy of 1 kcal/mol. A logarithmic scale has
been adopted to improve the readability of the figure: If an arrow in
the picture is twice as long, the actual norm of the vector is 10 times
larger.
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In the following section we detail each step, showing all
the phases of the process which leads from the raw data to
the emergence of the reaction path.

The final result of our analysis is summarized in Fig. 3,
where the selected walkers are superimposed on the free-
energy profile independently determined by means of exten-
sive MD simulations and standard techniques. Remarkably,

the walker positions and the orientation of their compasses
clearly highlight the minimum free-energy path connecting
the native and unfolded states. With a more restrictive choice
of the various threshold values, the transition-state region
can be pinpointed as well. As predicted, the simulation time
needed by the walkers to find the path is of the order of 104

time steps, significantly shorter than the characteristic time

Normalized Walkers’ Density0 0.0015

t=1 ps t=0.09 ps

t=0.15 pst= 3 ps

t=4 ps t=0.3 ps

t=6 ps t=0.36 ps

FIG. 4. �Color online� An effective migration of the walkers is observed on a time scale �fast� t��slow, and it is signaled by the changes
in the relative density. Results shown here correspond to the walker density in different time windows, for the initial condition A �left figures�
and B �right figures�, as defined in Fig. 2.
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associated with activation processes, which is around 106

time steps for the helix-coil transition considered here. We
envision the time separation to be even more pronounced for
more complex systems.

V. DATA ANALYSIS PROCEDURE

A. Effective migration and time window choice

The reduced current we want to observe requires a time
larger than �fast �although much smaller than �slow� to form.
On the other hand, the current disappears once the equilib-
rium is achieved. A look at the evolution of the walker den-
sity helps fix the most profitable time window. As an ex-
ample, we show in Fig. 4 several snapshots of the walker
distribution obtained starting from the two different initial
conditions displayed in Fig. 2. While case A reflects the Bolt-
zmann distribution at Tf, case B is quite far from equilib-
rium. Figure 4 compare the time evolution of the walkers’
density in the two cases. Finally, Fig. 5shows that when the
equilibrium is reached any difference due to the different
initial conditions is lost.

Based upon the inspection of the walkers’ migration, we
select as time windows the interval �0.5,6� ps for case A and
�0.09,0.36� ps for case B. The difference in the time scales
of the walker’s migration is due to the fact that initial con-
dition B is at higher temperature than initial condition A.

B. Density threshold and rate distribution

Once the time window is chosen, in order to reduce the
unavoidable noise present in the data, we filter out all the
points of the grid that are not consistently populated �i.e.,
have a density below a given threshold� during the migration
process. The distribution of the walkers’ population in the
space spanned by the reaction coordinates shown in Fig. 6 is
given by all the walker configurations visited during all the
independent simulations performed within the considered
time window. In order to make the choice of the density
threshold somewhat less arbitrary, we adopt the following
criterion: the threshold should be low enough that we do not
disconnect the two metastable states, but high enough to
have a fair statistics at each point of the grid. Within these
two boundaries, we verified that the actual value of the
threshold does not affect the final result. After inspection of
Fig. 6, we choose the value 18 as density threshold for case
A and 16 for B. The selected configurations cover the native
state, the transition path, and the unfolded state. Now we
need some quantity to discriminate between the states and
the reaction path.

This is a good place to explain the mechanism of the
walkers’ effective migration. If we picture the average rate
N�w� for clonation and destruction �defined in Eq. �25��, we
notice that the probability of clonation is larger in the un-
folded state region �Fig. 7�. This drives the effective migra-
tion. One may notice that the rate is everywhere negative: in

N
orm

alized
W

alkers’
D

ensity

0.0015

0

t=12 ps t=12 ps

FIG. 5. �Color online� Over
long time scales t��slow the dis-
tribution of walkers reaches equi-
librium and the difference in the
initial conditions is completely
lost. The left figure shows the
walker density at equilibrium for
the initial condition A while the
right figure corresponds to the ini-
tial condition B �see Fig. 2�.

0

T
otalW

alkers’
D

ensity

95

FIG. 6. �Color online� Walk-
ers’ density averaged over all the
time snapshots in the chosen time
window, as discussed in the text.
The left figure shows the walker
density obtained for the initial
condition A while the right figure
corresponds to the initial condi-
tion B �see Fig. 2�.
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fact, our implementation of the supersymmetric Langevin
equation is characterized by the fact that the number of walk-
ers grows exponentially. A random decimation of walkers
when their number exceeds some maximum value is suffi-
cient to solve the problem and does not introduce any sig-
nificant bias in the final result.

C. Reaction path revealed

The walker density alone will not reveal the information
we are most interested in: that is, where the reduced current
is stronger. This information is stored in the “compasses”
associated with the walkers: we expect the vectors to be
strongly collinear, in correspondence with the reaction path,
and disordered within the states. The averaged value of the
vector is not a reliable quantity to look at, because it can be
affected by cancellations between vectors with the same di-
rection but different sign. It is convenient to define the direc-
tion angle ��arctan��2 /�1�, where �1, �2 are the reaction
coordinates we are using: root-mean-square deviation and
helicity, respectively. The variance of � is a good measure of
the coherence between the directions of vectors in the same
cell of our grid. Figure 8 shows that the variance is indeed a
good marker for the reaction path. By combining the infor-
mation of Figs. 6–8 we select a set of walkers corresponding
to densely populated regions, with an associated high clona-
tion rate and with a small variance of �.

Once a reasonable threshold is chosen for the variance of
�, the resulting configurations can be compared with the free

energy profile computed for the same model with traditional
MD techniques. With a threshold value of 0.52 for case A
and 0.37 for case B, the result is shown in Fig. 9. Each vector
displayed in the figure at a given position ��1 ,�2� represents
an average over a small volume d�1d�2 centered in ��1 ,�2�.
All the figures were obtained with the values d�1=0.04, and
d�2=0.04.

VI. CONCLUSIONS

The results presented in this paper show that a supersym-
metrically enhanced version of molecular dynamics can be
efficiently used to identify transition states and reaction paths
in models of macromolecular systems characterized by a
clear separation of time scales �slow��fast. The great advan-
tage of the method is that the simulation does not need to
extend over the long time scale �slow, since the SuSy Kramers
spectrum contains from the very beginning all the informa-
tion about the topology of the phase space �11�. The trade-off
is that instead of a single trajectory, a large number of walk-
ers are used to explore the phase space. However, since each
single-walker trajectory is extremely short, SuSy MD is eas-
ily and efficiently implemented in a parallel computing
framework.

Although the theoretical and mathematical foundation of
the SuSy MD approach has some similarities with the re-
cently proposed finite-temperature string �FTS� method
�22,23�, there are important differences. A comparison of
these methods clearly highlights relative the strengths and

A
verage

R
ate

A
verage

R
ate

0

−2.95

−1.25

−10

FIG. 7. �Color online� Distri-
bution of the rate N�w� for clona-
tion or destruction of the walkers,
averaged over all the snapshots,
on the two-dimensional space
spanned by the reaction coordi-
nates. Results shown in the left
figure are obtained with the initial
condition A while the right figure
corresponds to the initial condi-
tion B �see Fig. 2�.

V
ariance

of

θ

V
ariance

of

θ

0.25

1.2

0.25

1.2

FIG. 8. �Color online� The av-
erage variance of the direction
angle �=arctan��2 /�1� �where
�1 ,�2 are the reaction coordinates�
indicates the region where the
vectors associated with the walk-
ers are more aligned. Results
shown in the left figure are ob-
tained with the initial condition
A while the right figure corre-
sponds to the initial condition B
�see Fig. 2�.
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weaknesses. While the FTS technique �as well as the transi-
tion path sampling �24�, which similarly relies on evolving a
string rather than a pointlike object in the phase space� re-
quires the definition of an initial and a final state, the SuSy
walkers are able to find their own way without any previous
knowledge of the configurational landscape. In addition, the
SuSy approach does not require the FTS assumption that the
isocommittor surface of the reaction could be locally ap-
proximated by a hyperplane. On the other hand, FTS-based
approaches bypass the problems related to the choice of re-
action coordinates �18�, since they work directly in the high-
dimensional phase space. Although the work presented in
this paper was based on a priori knowledge of a good set of
reaction coordinates, nothing in the method itself requires
such a step. It should be possible to modify the data analysis
procedure in such a way that clusters of configurations along
the reaction path are read directly in the phase space. We
believe this to be a promising direction for further research.
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APPENDIX: EXPLICIT EXPRESSION OF THE
POTENTIAL AND VALUES OF THE PARAMETERS

The system selected for our study is a Gō-like �25� model
that uses a short 	-helical segment as native structure. In

particular, we chose the first 12 residues of chain A of the
Alanine-zipper described in Ref. �26� �PDB code 1JCD� as
native helical structure. The potential energy associated with
the system is in the form

V = kr �
i=1

NR−1

�ri − ri
�0��2 + k� �

i=1

NR−2

��i − �i
�0��2 + �

i=1

NR−3

k�
�1��1

− cos��i − �i
�0��� + k�

�2��1 − cos 3��i − �i
�0����

+ �1 �
�i,j��C

�	5
�ij

rij
�12

− 6
�ij

rij
�10� + �2 �

�i,j��C
�
�0

rij
�12

,

�A1�

where the residues are numbered from 1 to NR and their
position is represented by the C	 atoms; rij is the distance
between residues i, j, while ri�ri,i+1; �i is the angle between
the vector from residue i to i+1 and the vector from i+1 to
i+2; �i is the dihedral angle formed by the residues
i, i+1, i+2, i+3; �� denotes a sum over pairs of residues i, j
with j− i�4; C is the native contact map, which is the list of
residue pairs that are in contact in the native structure; the
constants ri

�0�, �i
�0�, �i

�0� are fixed by the corresponding values
in the native structure; and the parameters �ij are set equal to
the distance between the C	 atoms of residue i and j in the
native structure.

The values of the remaining constants in Eq. �A1� have
been chosen as follows:

kr=100 kcal/ �mol Å2� k�
�1�=1 kcal/mol �1=5 kcal/mol

k�=20 kcal/ �mol rad2� k�
�2�=0.5 kcal/mol �2=1 kcal/mol

while �0 is equal to 3 Å and the native contact map C is

FIG. 9. �Color online� The compasses of the selected walkers are compared with an independently derived free-energy profile. The left
figure shows the results obtained for the initial condition A while the right figure corresponds to the initial condition B �see Fig. 2�. The
arrows illustrate the orientation of the compasses associated with the walkers and are superimposed onto the independently determined
free-energy profile at the transition temperature Tf. Each contour marks an increase of the free energy of 1 kcal/mol. Since there are large
differences in the length of these vectors �as discussed in the text�, a logarithmic scale has been adopted to improve the readability: If an
arrow in the picture is twice as long, the actual norm of the vector is 10 times larger.
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�1,5�,�2,6�,�3,7�,�4,8�,�5,9�,�6,10�,�7,11�,�8,12�� .

The transition temperature Tf of the system is defined as the
temperature corresponding to a peak in the heat capacity
curve. With our choice of the parameters we obtain
Tf �0.2�1 /kB. All the thermodynamic quantities �including
the free energy surface reported in Fig. 3� were obtained by
combining extensive MD simulations at different tempera-
ture with the weighted histogram analysis method �WHAM�
�27,28�.

In our implementation, the Langevin equation is solved
by means of the second-order quasisymplectic integrator de-
scribed in Ref. �29�, while the conservation of the norm of
the vector w is achieved by applying the implicit midpoint
rule �see, for instance, Ref. �30��.

The friction coefficient entering the Langevin equation is
set to �=2.5 ps−1, and the mass of each particle is
m=100 amu. The time step used in all dynamical simula-
tions is �t=10−4 ps. The SuSy MD simulations used
�60 000 independent walkers for each temporal snapshot
considered.
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